For the linked representation of a binary tree, we use a node that has three parts. in the first part, we store the reference of the left child of the node in the right part, we store the reference of the right child and in the middle part, we store the value of the node.
let's say we have a binary tree-like as you see in the image given below.
so the linked representation of a binary tree looks like this. if the node doesn't have any left child node then the left part of the node is None. and if the node doesn't have any right child then the right part of the node is None.
We also maintain the reference of the root node using a variable.
Program for implementing linked representation of binary tree using python programming.
from collections import deque class Node: def __init__(self, value): self.info = value self.lchild = None self.rchild = None class BinaryTree: def __init__(self): self.root = None def is_empty(self): return self.root is None def display(self): self._display(self.root, 0) print() def _display(self,p,level): if p is None: return self._display(p.rchild, level+1) print() for i in range(level): print(" ", end='') print(p.info) self._display(p.lchild, level+1) def preorder(self): self._preorder(self.root) print() def _preorder(self,p): if p is None: return print(p.info, " ", end='') self._preorder(p.lchild) self._preorder(p.rchild) def inorder(self): self._inorder(self.root) print() def _inorder(self,p): if p is None: return self._inorder(p.lchild) print(p.info," ", end='') self._inorder(p.rchild) def postorder(self): self._postorder(self.root) print() def _postorder(self,p): if p is None: return self._postorder(p.lchild) self._postorder(p.rchild) print(p.info," ",end='') def level_order(self): if self.root is None: print("Tree is empty") return qu = deque() qu.append(self.root) while len(qu) != 0: p = qu.popleft() print(p.info + " ", end='') if p.lchild is not None: qu.append(p.lchild) if p.rchild is not None: qu.append(p.rchild) def height(self): return self._height(self.root) def _height(self,p): if p is None: return 0 hL = self._height(p.lchild) hR = self._height(p.rchild) if hL > hR: return 1 + hL else: return 1 + hR def create_tree(self): self.root = Node('p') self.root.lchild = Node('Q') self.root.rchild = Node('R') self.root.lchild.lchild = Node('A') self.root.lchild.rchild = Node('B') self.root.rchild.lchild = Node('X') ########################## bt = BinaryTree() bt.create_tree() bt.display() print() print("Preorder : ") bt.preorder() print("") print("Inorder : ") bt.inorder() print() print("Postorder : ") bt.postorder() print() print("Level order : ") bt.level_order() print() print("Height of tree is ", bt.height())
Also, read these posts
- What are Data Structures and algorithms
- Algorithm design and analysis
- Classification of algorithms
- How to calculate the running time of an algorithm.
- Worst Average and Best-case analysis of the algorithm.
- Big o notation
- Big o notation examples
- Linked List in Data Structures
- Traversing in Linked list
- Operations on the linked list
- Insertion in the linked list
- Deletion in a linked list
- Reversing a linked list
- Sorting a linked list
- Find and remove the loop in the linked list
- Doubly linked list
- Insertion in the doubly linked list
- Deletion in the doubly linked list
- Reversing a doubly linked list
- Circular linked list
- Insertion in the circular linked list
- Deletion in the circular linked list
- Merge two linked list
- Header linked list
- Sorted linked list
- Stack in data structures
- Queue in data structures
- Circular queue
- Dequeue in the data structure
- Priority queue
- Polish notation
- Tree in the data structure
- Binary tree
- Array representation of the binary tree
- Traversing in the binary tree
- Inorder traversal in the binary tree
- Preorder traversal in the binary tree
- Postorder traversal in the binary tree
- Level order traversal in the binary tree
- Binary search tree
- Insertion in the binary search tree
- Deletion in the binary search tree
- Heap in data structures
0 Comments