In level order traversing we visit each node of the tree level by level.
let's say we have a tree as you see in the image given below.

here in the tree, there are 4 levels. so to find the level order of this tree we visit each level from top to bottom and left to right and traverse each node at that level.
First, we visit level 0 of the tree. so the level order of the tree is P
Now come to level 1. and in level 1 there are two node A and X so the level order of the tree become
P A X
then we visit level 2 so the new level order of tree is
P A X T Z M G
then we visit level 3 so the new level order of tree is
P A X T Z M G Y L F C
so this is the complete level order of the given tree.
let's say we have a tree as you see in the image given below.

here in the tree, there are 4 levels. so to find the level order of this tree we visit each level from top to bottom and left to right and traverse each node at that level.
First, we visit level 0 of the tree. so the level order of the tree is P
Now come to level 1. and in level 1 there are two node A and X so the level order of the tree become
P A X
then we visit level 2 so the new level order of tree is
P A X T Z M G
then we visit level 3 so the new level order of tree is
P A X T Z M G Y L F C
so this is the complete level order of the given tree.
Program to find the level order of tree using python programming.
from collections import deque class Node: def __init__(self, value): self.info = value self.lchild = None self.rchild = None class BinaryTree: def __init__(self): self.root = None def is_empty(self): return self.root is None def display(self): self._display(self.root, 0) print() def _display(self,p,level): if p is None: return self._display(p.rchild, level+1) print() for i in range(level): print(" ", end='') print(p.info) self._display(p.lchild, level+1) def preorder(self): self._preorder(self.root) print() def _preorder(self,p): if p is None: return print(p.info, " ", end='') self._preorder(p.lchild) self._preorder(p.rchild) def inorder(self): self._inorder(self.root) print() def _inorder(self,p): if p is None: return self._inorder(p.lchild) print(p.info," ", end='') self._inorder(p.rchild) def postorder(self): self._postorder(self.root) print() def _postorder(self,p): if p is None: return self._postorder(p.lchild) self._postorder(p.rchild) print(p.info," ",end='') def level_order(self): if self.root is None: print("Tree is empty") return qu = deque() qu.append(self.root) while len(qu) != 0: p = qu.popleft() print(p.info + " ", end='') if p.lchild is not None: qu.append(p.lchild) if p.rchild is not None: qu.append(p.rchild) def height(self): return self._height(self.root) def _height(self,p): if p is None: return 0 hL = self._height(p.lchild) hR = self._height(p.rchild) if hL > hR: return 1 + hL else: return 1 + hR def create_tree(self): self.root = Node('p') self.root.lchild = Node('Q') self.root.rchild = Node('R') self.root.lchild.lchild = Node('A') self.root.lchild.rchild = Node('B') self.root.rchild.lchild = Node('X') ########################## bt = BinaryTree() bt.create_tree() bt.display() print() print("Preorder : ") bt.preorder() print("") print("Inorder : ") bt.inorder() print() print("Postorder : ") bt.postorder() print() print("Level order : ") bt.level_order() print() print("Height of tree is ", bt.height())
Also, read these posts
- What are Data Structures and algorithms
- Algorithm design and analysis
- Classification of algorithms
- How to calculate the running time of an algorithm.
- Worst Average and Best-case analysis of the algorithm.
- Big o notation
- Big o notation examples
- Linked List in Data Structures
- Traversing in Linked list
- Operations on the linked list
- Insertion in the linked list
- Deletion in a linked list
- Reversing a linked list
- Sorting a linked list
- Find and remove the loop in the linked list
- Doubly linked list
- Insertion in the doubly linked list
- Deletion in the doubly linked list
- Reversing a doubly linked list
- Circular linked list
- Insertion in the circular linked list
- Deletion in the circular linked list
- Merge two linked list
- Header linked list
- Sorted linked list
- Stack in data structures
- Queue in data structures
- Circular queue
- Dequeue in the data structure
- Priority queue
- Polish notation
- Tree in the data structure
- Binary tree
- Array representation of the binary tree
- linked representation of a binary tree
- Traversing in the binary tree
- Inorder traversal in the binary tree
- Preorder traversal in the binary tree
- Postorder traversal in the binary tree
- Binary search tree
- Insertion in the binary search tree
- Deletion in the binary search tree
- Heap in data structures
0 Comments